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The intent of this research is to explore the entire design space of mechanism topologies 

by using a graph grammar synthesis approach. A new graph representation of planer mechanism 

has been developed to represent the planar mechanism with revolute (R), prismatic (P), and pin-

in-slot (RP) joints. Following Gruebler’s equation, the graph grammar rules are designed to 

increase the complexity of the linkage and avoid changing the default mobility. The “recognize” 

and “apply” process of graph grammar rules is done through the computer, so that the design space 

of mechanism topologies can be fully explored automatically. 

The design space of four to fourteen bar R-joint 1-DOF topologies is obtained through this 

research. Each of the linkages in this space is valid and does not contain any rigid sub-structure as 

ensured by the additional graph grammar rules. The higher DOF topologies are also enumerated 

by degenerating the 1-DOF results. In order to increase the diversity of the topologies design space, 

P- and RP-joint substitution rules are used to replace the revolute joints in the topologies. With 

additional functions, the rotatability of the linkage can be preserved after P-joints are introduced. 

The research results in a total of 159,526 unique mechanism topologies that are each saved as 
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independent computer files. Additionally, a topology design exploration tool is created in this 

study to provide a convenient approach to generate complex 1-DOF linkage design. 
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1 Introduction 

It is well known that planar mechanisms like four-bars and cranks-and-sliders have been 

used for centuries to accomplish different tasks. While many planar mechanisms are common 

knowledge to mechanical engineers, the mechanisms can be highly complex and innovative. 

Planar mechanisms – whether they are simple or complicated – are all part of the same language 

follows the same restrictions. Since Gruebler’s equation governing the mobility of planar 

mechanisms is straightforward to solve (with simply the number of links and joints), it would 

appear possible that the entire valid space of one degree-of-freedom (DOF) mechanisms can be 

captured explicitly. In this space, each of the linkages is controlled by a single input. Meanwhile, 

linkages that contain rigid structures or static links are considered as violations and removed from 

this space. Various other authors[1][2][3][4] have attempted such endeavors, but the arguments 

about the size of valid linkage designs space still exist. More than that, the topologies of these 

complex designs are not available. Due to this reason, it is difficult to obtain more special 

kinematic properties of the complicated linkage designs. So in this research, we intent to represent 

all planar mechanism topologies as a library of graphs that each of them could be simulated as a 

real linkage design. As the number of links and joints in a linkage increase, the complexity of the 

kinematic properties also increases – beyond what is produced by common 4 and 6-bar linkages. 

This is important to help engineers explore new possibilities for accomplishing complex tasks. 

In recent decades, the focus on robotic systems has led many to pursue multi-actuator 

systems for complex movements as alternative design instead of the simpler one DOF mechanisms. 

Although it is not substantiated, such single degree-of-freedom mechanisms may prove to be 

lighter, more robust, and more efficient than high DOF robotic “open chains.” Also, they may 

provide alternative solutions lead to less cost and engineering. Two path synthesis tasks that are 
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Figure 1: A robot arm and an 8 bar linkage are used in two path synthesis tasks. 

 
Figure 2: Three different graph representations for a single input 4-bar linkageFigure 3: A robot arm and an 8 bar linkage are 
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accomplished by a robot arm and an eight-bar linkage are shown in Figure 1. The task for the robot 

arm is to polish the edge of a flat glass in Figure 1a. This process could be simplified as the path 

synthesis design, and 4 servo motors are used to control this robot arm and ensure the grinding 

head can keep following the edge. In figure 1b, a similar path is generated by an output joint in an 

eight-bar linkage with a constant input link. Although the path synthesis and kinematic property 

are not what we focus on in this study, this example does give us an idea that the utilization of 

linkage designs could be expanded by increasing their complexity. Obviously, the path in Figure 

1b is not a traditional path, which cannot be synthesized by 4- or 6-bar linkages. So this requires 

us to increase the structural complexity of the linkages for accomplishing more difficult tasks. 

Regardless, exploring the space of planar mechanisms has always been challenging. With a 

repository of mechanisms, engineering designers could more easily to explore the space of 

possibilities. Furthermore, it is possible that computational search could optimize the dimensions 

of one or more of the many valid topologies to best meet the desired kinematic behavior. 

Figure 1: A robot arm and an 8 bar linkage are used in two path synthesis tasks. [5][6] 

(a) (b) 
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In this research, a formal and implemented approach is developed to capture the valid space 

of planar mechanisms. This approach not only synthesizes revolute (R) joint linkages as shown by 

previous authors; it additionally includes prismatic (P) and pin-in-slot (RP) joints. This is 

accomplished by a set of graph transformations – referred to as grammar rules – that construct 

graphs in the systematic method presented by Tsai [7]. The rules also transform simpler dyadic 

mechanisms into more complex linkages, like the double butterfly mechanism, that lack any dyadic 

chains. By using these rules, the space of 1 degree-of-freedom (DOF) planar mechanism can be 

fully explored. After that, linkages with higher DOF can also be obtained from this space by 

degeneration process. 

Graph grammar rules are used as the design criteria to achieve automated exploration of 

the topologies. The function of graph grammar rule is to transform graphs by addition, deletion 

and relocation of the nodes and arcs. Refer to graph representation of linkage, graph grammar rules 

can create new linkages by modifying the structure of the existing topologies. All of these graph 

grammar rules are design base on Gruebler’s equation: 

3(L-1) – 2J1 – J2 = M (1) 

In this equation, L represents the number of links or rigid bodies, J1 represents the number of 1-

DOF joints (such as R and P), and J2 represents the 2-DOF joints (such as RP and gear mate). The 

result M, is also known as the overall mechanism degrees-of-freedom or as the mechanism 

mobility. According to this equation, graph grammar rules can be designed to vary the linkage 

topology without changing the mobility, and the design process of them will be discussed in the 

later section. 
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We are also interested in synthesizing complex linkages with prismatic joints in this 

research because this is a challenging problem and there are little studies attempt to enumerate the 

more complicated P-joint topology designs. When P-joint is involved to a linkage design, it can 

limit the rotatability of the links, which may lead to an invalid design. Hence, when introducing 

the P-joints to the topology design, we cannot treat it as a simple graph synthesis problem. Instead, 

the kinematic property of each of the P-joint topologies needs to be concerned after it is created. 

Meanwhile, a method is developed to ensure the P-joint will not affect the validity of the linkage. 

But the process of modeling and simulation for each of the individual complex P-joint designs is 

very time-consuming. Due to this reason, an efficient approach is necessary for examining each of 

the P-joint results. In this research, Planar Mechanism Kinematic Simulator (PMKS) is used for 

producing the simulations. This simulator is developed by Campbell [8], and it can simulate the 

behavior of planar mechanisms with its position, velocity and acceleration. More importantly, all 

of the topology results can be opened and simulated directly in PMKS. So the examination process 

for the P-joint linkage designs is simplified significantly. Meanwhile, three constraints are used in 

this research to prevent violations after placing P-joint to a linkage design. So the exploration of 

the complex P-joint topology space is become achievable. After P-joint is placed, the design space 

of RP-joint linkages can be easily discovered by a RP-joint substitution graph grammar rule. 

With all the graph grammar rules and their applications, the design space of mechanism 

topology can be populated. Also, a procedure is designed to eliminate any isomorphic results and 

capture the rigid structures. The rigid structures are valuable that they can be used to detecting the 

rigid sub-part within a movable linkage. So obtaining all these truss structures can ensure the 

validity of the results. After that, a breadth-first tree search method is used for searching the 

topologies design. This search starts with a single pendulum mechanism since it is the simplest 1-
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DOF linkage. The invoked graph grammar rules will be applied to it and create new topologies. 

Each of these topologies is set as a host graph, and more new topologies can be synthesized by 

these graph grammar rules and sorted in the next level of the tree. Then the valid design space of 

topology is fully discovered. 

Due to high difficulty for constructing a complex linkage model, a design exploration tool 

is also developed in this thesis to provide a quick and simple approach for synthesizing complex 

linkage with P- and RP-joints designs. Based on the established rules, a planar mechanism design 

problem can be transferred to a graph creation problem. With the specification of desired number 

of link and types of joint, this tool can create a topology by using graph grammars and satisfies 

these requirements. After that, the desired topology will be simulated by PMKS, and the kinematic 

behavior of this linkage cam be observed. 
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2 Related Work 

There are many researchers who have been working on exploring the design space of planar 

mechanisms, and the results for 6, 8 and 10-bar mechanisms with only revolute joints are well 

established [1][2][7][9]. These publications present the total numbers of the possible valid 

topologies designs in each levels. However, when the topologies have higher links or higher DOF, 

contradictions of the size of these space exist[2][3]. 

When the linkages synthesis involves P-joints, there are additional challenge to complete 

the exploration of the space. Sardain provides a method to avoid the rotatability being affected by 

P-joints [10]. In his research, a linkage is divided into two different kinds of components: primary 

components and secondary components. The primary components are those components that can 

be calculated from the dimensions at the beginning, and the synthesis of secondary components, 

which depend on the results from primary components. If a link with a P-joint needs to be added 

to the primary components, the link must be a binary link. Also, Sardain sets the limit that it can 

only have one P-joint on each link. Based on these rules, 43 topologies for 4 and 6-bars that contain 

P-joints are found. In this thesis, it is shown that the space with P-joint is significantly bigger. 

In order to achieve this exploration, graph theory and graph grammar rules are used in this 

study, and the linkage design process is seen as the process of graph synthesis. Some engineering 

design problem could be viewed as graph transformation problems, and graph grammar rules can 

represent component, function or structure in real design. Hence, the design will be closer to the 

completion by applying these grammar rules to the graph[11]. This graph synthesis approach have 

been used for solving problems of component selection[12], sheet metal design[13], and synthesis 

of gear trains [14]. For this study, once the graph grammar rules are defined, the computer can use 
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these rule to explore the design space and synthesis new linkage for a given engineering design 

problem. 

The idea of the transformation from graphs to the real linkages is based on Tsai’s graph 

representation of linkages[7]. In his research, complex mechanisms are represented by very simple 

graphs that only contain four elements: nodes, joints, input label and letter of joint type. Meanwhile, 

some detailed information such as dimension of the linkages or locations of each joint are not 

included in his study. The methodology of using graphs to present the design of linkage mechanism 

is very valuable since this study is related to graph-based searching process, and it provides a 

connection between graphs and real mechanisms. Also, the design of the graph grammar rules will 

become easier since less information need to be concerned. Once this graph representation of 

linkages is established, graph grammar rules could be applied and modifies the graph to explore 

new linkage. 

Graph synthesis is a tedious process to do by hand because it involves graph and graph 

recognition, which requires all of the valid locations in the graph that the graph grammar rule can 

be applied can be discovered. Depend on the size of the graph and the complexity of the grammar 

rule, the recognition process could be extremely difficult to complete by human hand. Hence, the 

software Graphsynth that have been developed by Campbell [15] is used in this research. When 

all of the rules that are defined, the recognition and apply function will automatically execute to 

generate new graphs. 
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3 Graph Representation 

Graph theory is applied for representing and exploring linkage topologies in this study. 

Graphs can be seen as combinations of node and arcs, and they can be used to model the 

relationships between different objects in a system. By using graphs, linkage mechanisms could 

be translated into a graphical language that could be recognized by the computer for automated 

synthesis. 

Designing the graph representation schema of linkages is the first task in this study. The 

way in which the linkage is modeled will directly affect the construction of the rules, the computing 

speed of the search, and the conversion process from topologies to kinematic simulations. Hence, 

the representation is carefully defined in the first step of this study and all of the other efforts is 

based on this representation system. 

After the graph representation of linkage is established, graph grammar rules can be 

introduced to create new topology. The general function of grammar rules is to change the 

combination of a graph so a new graph can be generated. This process is completed by adding new 

nodes or arcs to a graph. Also, it could be done by deleting or relocating nodes or arcs in an existing 

graph. These grammar rules only apply to the location that they recognized and modify the graph 

based on the how they are designed. Hence, automatic synthesis of linkage is achievable once these 

design graph grammar rules are built. 

3.1 Selecting Graph Representation 

Two different graph representations are discussed in this thesis. In Radhakrishnan’s study 

[8], the graph representation includes many details that relate to a real linkage design. His 

representation approach for a 4-bar linkage is illustrated in Figure 2a. The local labels indicate the 



 
 

 

                  

             

               

               

                  

                  

              

        

 

  

             

Figure 4: Three different graph representations for a single input 4-bar linkage 
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function of nodes and arcs. For example, the local label “link” represents a link or rigid body and 

“pivot” represents a revolute or R joint which connects two links. While concrete objects are 

represented by nodes, the arcs are used only to represent the flow of energy. 

The other graph representation investigated is by Tsai [2]. Here in Figure 2b, nodes indicate 

links in the linkage, and arcs indicate the joints. Local labels only appear in arcs to show the type 

of joints. The ground link is not indicated. Instead, the input link is known as the node that 

surrounded by a circle. Since this graph representation is used for structural analysis, physical 

dimensions of the linkages are not considered. 

(a) 

(b) (c) 

Figure 2: Three different graph representations for a single input 4-bar linkage. 
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Radhakrishnan’s approach is more descriptive than Tsai’s because it includes additional 

elements needed to define a mechanism. By representing the joints as nodes, two aspects of the 

mechanism can be more clearly defined. First, since nodes are typically attributed to Cartesian 

coordinates in representing graphs, the joints can be explicitly positioned by the corresponding 

joint node. Second, the limitation of the arc-as-joint in Tsai’s representation prevents representing 

three or more links joined by the same joint. Radhakrishnan’s can explicitly represent this as its 

own topology. 

In this study, the graph representation is based on Tsai’s work, with some modifications 

towards Radhakrishnan’s approach, and it is presented in Figure 2c. For this representation, local 

labels are used to describe joints as is done in Tsai’s but are also used to indicate the ground link. 

The default joint type is revolute, so instead of including an “R” label, it is simply left blank. 

Additional labels for “P” and “RP” are added to represent prismatic sliding joints and pin-in-slots 

half-joints respectively. Instead of setting the driver link as the input of the linkage, we consider 

the joint that drives this prime link as the prime mover of the linkage. Because in real designs, the 

input links of linkages are usually connected and driven by rotational or linear motors. Hence, the 

change we make can distinguish what type of input joints is used in the linkage, and it is defined 

by adding the joint type to the input arc. 

Tsai never explicitly captures the RP joint but rather sees this as a special case when an R 

and a P occupy the same location. Our approach explicitly captures half-joints as unique topologies 

since the goal is to synthesize realizable mechanisms from the graph representation. Tsai 

developed his approach more as a method of analysis and categorization, so the avoidance of RP 

is justified. Interestingly, Tsai does introduce the gear, or “G” half joint, so his method does not 

completely avoid the complications caused by these interactions. When a linkage contains RP 



 
 

 

                    

                    

              

                

                 

                  

                  

               

                     

                  

                      

               
       

  

11 

joints, there is an added complexity due to a lack of symmetry in the joint. One of the links serves 

as the slide or P component of the RP-joint while the other link serves as the R, revolute, or pin in 

the slot. This is worth distinguishing given the significant effect on the kinematics of the linkage. 

For example in Figure 3, the two three-bar linkages that contain RP-joints have the same topologies 

and dimensions, except how the two slots are located. The slot is located at the ternary link in 

Figure 3a. Meanwhile, the other slot is set on ground in Figure 3b. The two paths indicate the 

movements of tracer points on the ternary plates, and it is clear that the paths are different on the 

both mechanisms. For this reason, the graph representation of the RP-joint should be able to 

capture the location of the slot and the direction of the arc is used in the RP-joint arc to indicate its 

design. In Figure 3a, the RP-joint is represented as an arc going from ground to the ternary link. 

With the tail of the arc corresponding to R and the head as the P, the R is on the ground and the 

(a) (b) 

Figure 3: Two RP-joint arcs with different direction of arrow represent the order of the 
pin and slot in the real linkages[16][17]. 
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Figure 5: Two RP-joint arcs with different direction of arrow represent the order of the pin and slot in the real linkages 

 
Figure 6: Applying a dyad rule to generate a 4-bar linkage with its representation in real linkage design Figure 7: Two RP-joint 
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slide is part of the ternary plate. In Figure 3b, the arc direction is switched. In our augmentation of 

Tsai’s representation, arc direction will be used to indicate different mechanisms topologies. 

3.2 Design of Graph Grammar Gules 

After establishing the graph representation, graph grammar rules can be developed to 

generate new topologies. This methodology is described in Campbell’s study [11], in which graph 

grammar rules serve as a production rule system to create a tree of graph topologies. 

A grammar rule is constructed of a Left Hand Side (LHS) and a Right Hand side (RHS). 

The functions these two parts are to identify which part in the host graph can be changed and how 

the change is produced. The LHS of the rule is used for the recognition process. In this process, 

the computer tries to recognize the all of the locations that the rule can be applied to. If it succeed, 

this rule is set as an option and we can use it to change the graph. Hence, we can design what part 

of the linkage can be made change to. After that, the apply process is to modify a host graph based 

on the components of RHS. The RHS of the rule indicates how to add or remove nodes, arcs and/or 

labels from the recognized part in the graph. Respectively, the process of applying graph grammar 

is to add components or make modifications to an existing linkage resulting in a new valid linkage 

rules in this study. 

Figure 4 shows an example of a graph grammar and a 4-bar linkage is synthesized from a 

pendulum by using this rule. This process starts from a host graph that has two nodes n0 and n1 

and an arc a0. The local label ground in n1 means this link is connected to the ground and it is 

driven by an input pin joint which is specified by the label “input” in a0. This link and ground 

need to be connected by a dyad to form a 4-bar linkage. So the design of the LHS for the rule is 

constructed by two nodes n0 and n6, which means this rule will search any pair of nodes in this 



 
 

 

                   

             

                   

                 

                  

                

             

           

                 

              

                

                

                
  

 

Figure 8: Applying a dyad rule to generate a 4-bar linkage with its representation in real linkage design. 

 
Figure 9: An example of applying a dyad rule to generate a 4-bar linkage with its representation in real linkage 
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Figure 4: Applying a dyad rule to generate a 4-bar linkage with its representation in real 
linkage design. 

host graph. In this case, two nodes n0 and n1 matched the LHS and becomes a valid location for 

applying this dyad rule. This matching process is referred to graph recognition. After that, the host 

graph is modified according to how the right hand side (RHS) of the rule differs from the left. In 

this example, the RHS of the rule retains nodes n0 and n6 from LHS with new additions a0, n1, 

a1, n2 and a2. These additions are referred as a dyad component which has 2 links and 3 joints, 

and it is added to recognized location n0-n1. This result in a four-bar topology. In this study, 

different grammar rules are used to encapsulate the constraints of planar mechanisms and define 

how more complex mechanism graphs can be created from simpler ones. 

Based on the design of the LSH, a rule could be applied to the same location repeatedly. 

So avoiding these redundant applications in the searching process is important in this study. Take 

the example in Figure 4 again, the valid location could be recognized twice with two different 

sequences which are n0-n1 and n1-n0, and the computer will return this two same location as 
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options that the rule can be applied to. In this study, the dyad that is represented in the RHS of the 

rule is a symmetrical component. So applying this dyad rule to these two options leads to 

generating two same four-bar linkages. To solve this problem, options need to be checked to see if 

any have the same collections of elements. If the collections are the same, only one option is 

retained and the others are considered as duplicate options and are removed. When a graph tree 

search is involved, the same results will develop indistinguishable branches in the tree, which may 

cost time and memory. So these repeated applications of rules should be avoided. Also, another 

method is used to check and remove isomorphic graphs during the synthesis process. The details 

of is will be discussed in later section. 

Related to how a four-bar linkage is generated by the dyad rule, the full design space of 

mechanism topologies can be explored and all of the rigid structures are able to be identified with 

an appropriate collection of grammar rules. The fundamental criterion of designing these rules is 

based on the Gruebler’s equation. The DOF of a linkage can be easily calculated by using this 

equation. This equation ensures the graph grammar rules will not change the DOF of a new linkage. 

The rules in this research are divided into four categories based on their functions in synthesis 

process: Generation, Transformation, Detection and Joint Replacement. The function of 

Generation rules is to add components to increase the number of links and joints in the linkages. 

After that, Transformation rule is applied to relocate the ground joint to form new topologies. The 

Detection rules recognize and extract the rigid structures in the graph. Finally, the Joint 

Replacement rule will recognize R-joints and replace them by P-joints when the position is 

accessible. 
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3.2.1 Generation Rules 

One way to explore a more complicated linkage is to add more links and joints to a linkage 

and a new linkage is created. For example, the generation of some famous 6-bar linkages like Watt 

I Watt II or Stephenson I linkages can be created by adding a dyad between two different links of 

a 4-bar linkage. Hence, if more components which are like the dyad that can be added to the 

linkages are discovered, the complexity of the linkages can be increased by setting them as the 

additions to the linkages. 

The function of Generation rules is to recognize the applicable locations at a linkage and 

to add the designed components to this location without changing the mobility of this linkage. 

Keeping 1-DOF for every linkage in this research is important. If linkages with different DOF are 

involved in the search process, designs of graph grammar rules will become more complicated. 

That’s is because the change of the mobility for topology is depend on how many nodes and arcs 

are added. For each kind of DOF changes, we need to find out the all combinations of nodes and 

arcs to meet that change. So designing more components for the synthesis of multiple DOF linkage 

is not preferred in this study. In fact, the design space of higher DOF linkage could be discovered 

through degenerating the 1-DOF linkage space. So the first step to create these rules is to define 

what kind of components can be applied to the linkage and reserve its original DOF. The 

construction of these components is based on modified Gruebler’s equation with new variables as 

below: 

3(L-1+Lrule) – 2(J1 + J1rule) – (J2 +J2rule) = M (2) 



 
 

 

              

                    

                 

                  

              

             

               

        

 

   
     

     
     

 

 

 

 

 

  

                 
    

 

Table 1: Components for design the Generation rules. 
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Table 1: Components for design the Generation rules. 

Dyad Triad Double-Triad Triple-Triad 
Lrule 2 4 6 8 
J1rule 3 6 9 12 

In this equation, variables Lrule, J1rule and J2rule indicate the number of links, 1-DOF joints 

and 2-DOF joints that are added by a rule. When the mobility M is set to 1, combinations of these 

3 variables can be found to balance this equation. Since RP-joints are addressed later, J2 and J2rule 

are set to 0. We focus on possible Lrule and J1rule combinations to provide insight into the valid 

permutations of Generation rules. Some example of these permutations is depicted in Table 1. 

After combinations are found, components with these numbers of joints and links can be 

designed. In order to reduce the amount of isomorphism during the synthesis process, only one 

L2 

L4 

L3 

L1 

(a) (b) 

Figure 5: An example of applying a dyad rule to generate a 4-bar linkage with its representation 
in real linkage design. 
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component is used to represent each of these combinations. For the combination Lrule=2, J1rule =3, 

only the dyad can satisfy it. But for the combination Lrule = 4, J1rule = 6, there are more than one 

component can meet this requirement. In Figure 5, both of these components have 4 links and 6 

joints. But the component on the left is constructed by attaching a dyad component L3-L4 to the 

other dyad component L1-L2. Since adding this component to a linkage is equivalent to adding two 

dyads in sequence, it is not considered as an appropriate component that can be used to make a 

unique topology. In other words, a component that is synthesized from dyad additions should not 

be an option for making additional Generation rules. In contrast, the component on the right that 

cannot be synthesis by dyad structure is chosen for the combination Lrule = 4, J1rule = 6. Some 

examples are shown in Table. 1. These components are presented by graphs and are set in the RHS 

of the graph grammar rules as the additions that can apply to a graph. 

Once the components are selected, we need to define the LHS of the rule. The function of 

which is to identify the locations in the linkage so that components could be added. For the dyad 

rule, it is recognized on any pair of links as part of the left-hand. For the more complex triadic 

rules, only one of the links and the ground link is recognized in the mechanism. The reason for 

this setup is to increase the number of ground joints after the application of triadic rules, and it can 

provide more recognizable locations for the Transformation rule to apply so more topologies can 

be synthesized. The application of Transformation rule is discussed in next section. An example 

for applying a single triad rule to a pendulum and create a Stephenson six bar inversion III linkage 

is shown in Figure 6. Compared to the LHS of the dyad rule in Figure 4, the node n6 in the LHS 

of the triad rule has an extra label name “ground”, which means one of the nodes in the LHS of 

the triad rule can only recognize the ground link in the host linkage. In this case, two joints in the 

triad attach to the ground with the others attached to the pendulum, and the new linkage is created. 



 
 

 

                 

              

                 

                

             

                  

         

 

               
       

Figure 14: Applying a triad rule to generate a Stephenson six bar inversion III linkage with its representation in 
real linkage design. 

 
Figure 15: The process of generating a 4-triad component.Figure 16: Applying a triad rule to generate a 
Stephenson six bar inversion III linkage with its representation in real linkage design. 18 

Figure 6: Applying a triad rule to generate a Stephenson six bar inversion III linkage 
with its representation in real linkage design. 

For multiple triadic rules, the number of the ternary plates in the rule is needed to be 

increased for generating more complicated topologies. For example, the additions in Table. 1 are 

used for exploring linkages with 10 links due to one of these linkages can be made by directly 

adding the triple triad component to the input pendulum. When doing a 12-bar linkage search, a 

new component is needed which contains one more ternary plate and ground joint then Triple-

Triad rule. Its creating process is shown in Figure7. A new component that has a ternary plate with 

Figure 7: The process of generating a 4-triad component. 
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a binary link is inserted to the Triple-Triad component. This adding ternary plate process is 

repeated when higher level linkage generation is required. 

Most of the topologies are created by applying these Generation rules and they simplify 

the generation constraints by adding components that are designed based on Gruebler’s equation. 

The mobility of the new linkage will not be changed when applying Generation rules, but they 

limit the possible configurations that are created. To solve this, the next Transformation rule 

explores more linkage mechanisms to fully cover the space of possibilities. 

3.2.2 Transformation Rule: Move Joint from Ground to Link 

A new graph could be created not only by adding more components to the original graph, 

changing the combination of the nodes and the arc in the graph can also lead to a new configuration. 

For this reason, more results can be covered by using a Transformation rule while the Generation 

rules do not create all the possible topologies. When triadic rules are applied to the host, the number 

of ground joints in the linkage increases, and relocating these ground joints can result in finding 

new topologies. So the function of Transformation rule is to detach one of the non-input ground 

joints and connect it to a different link to form new mechanism. The Transformation rule is only 

valid when the number of ground joints is higher than two. Otherwise, an invalid linkage with a 

single ground joint could exist. 

An application of this rule for generating a double butterfly linkage as shown in Figure 8. 

The host topology is 8-bar linkage that generated by adding a double triad to a pendulum n0 and 

the ground. A collection n5-a6-n6-a9-n1 and a node n0 (the arc a0 is not included) in the host 

graph are recognized by the component n0-a1-n1-a0-n2 and n3 in the LHS of the rule respectively. 

After this recognition process, this rule is applied to the host graph by removing the arc a9 between 



 
 

 

                    

                   

                

             

            
       

 
  

Figure 17: Applying a Transformation rule to generate a double butterfly 
linkage with its representation in real linkage design. 
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n6 
n2n2 

Figure 8: Applying a Transformation rule to generate a double butterfly linkage 
with its representation in real linkage design. 

n6 and n1 and adding a new arc a10 between n0 and n6, and then a new double butterfly linkage 

is produced. The node n0 and arc a1 that on LHS of this rule can avoid building hyper arcs (two 

or more arcs between two nodes) in the graph. Also, by using additional function during the 

recognition process, this rule can simply keep away from making rigid triangle structure. 
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One advantage of using Transformation rule is it can reduce the number of triadic rules 

significantly by changing the internal connection of the graph. When only using one triadic rule, 

the diversity of the topologies could be increase by connecting its binary links to different locations 

of a graph. The drawback of this method is it required more rules to capture all the combination of 

applicable locations so those binary links could be assigned differently. Instead, the 

Transformation rule can achieve the same diversity by changing the existing connect between the 

host graph and the new addition. For example in Figure 8, the double butterfly linkage could be 

generated by using only one double triad Generation rule while two of the binary link n2 and n6 

are connected to the input pendulum n1 directly without using Transformation rule. But when we 

need to apply this double triad rule to other locations, more graph grammar rules need to be 

designed so those locations with different combinations of nodes and arcs could be recognized. 

The combinations of these designs could be a lot, especially when the component becomes more 

complicated, it is impossible to design all of these rules for each of the application. For this reason, 

the design of all of the triadic rules is to only connect one binary link to the host linkage, and the 

rest of them are connected to the ground. By using the single Transformation rule, relocating these 

ground joints can generate more new graphs without using extra graph grammar rules, and this is 

the reason why we maximize the number of the ground joints in the triadic rule design. 

By using the transformation and Generation rules, the design space of R-joint mechanism 

topologies is able to be fully explored. In this space, single DOF for each of the topologies is 

guaranteed, but the rigid structure problem exist and it affects the rotatability of links in the linkage. 

So this problem needs to be resolved, and the invalid results should be excluded from the design 

space. 
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Figure 20: An 8 bar linkage contain a 5-bar rigid structure equivalents to a 4-bar linkage. 
 
Figure 21: A Remove_Three_Bar rule.Figure 22: An 8 bar linkage contain a 5-bar rigid structure equivalents to a 4-bar linkage. 
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3.2.3 Taboo Detection Rules 

The designs of generation and Transformation rules are highly based on Gruebler’s 

equation. Since the Gruebler’s equation only focus on the mobility of the whole linkage design, 

the relative mobility between each of the links in a linkage is neglected. So a rigid structure could 

appear after applying Transformation rule to a linkage. For example in Figure 9, the ground joint 

J1 in the 8-bar linkage is relocated to the link L1 after applying Transformation rule. This result in 

a new 8-bar linkage contains a 5-bar rigid structure. In this 5-bar rigid structure, all of the links are 

relatively static to each other. So this rigid structure moves as a whole plate and is equivalent to a 

coupler link in 4-bar linkage. Although this 8-bar linkage still remains 1-DOF, it is considered as 

a violation. 

Rigid structures that can affect the partial mobility of the linkage should be captured. 

Correspondingly, topologies that contain these structures should be removed from the design space. 

J1 

L1 

Rigid Structure 

Figure 9: An 8 bar linkage contain a 5-bar rigid structure equivalents to a 4-bar linkage [18]. 
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So this requires a universal method to detect and extract the rigid structure from any valid linkage. 

One of the approaches is to set up additional functions avoid creating simple rigid structures during 

rule application such as the additional function that in the Transformation rule can keep away from 

making a 3-bar triangle rigid structure. But when the number of links increases, the number of 

rigid structures grows exponentially. So finding all of the rigid structures and including them into 

the additional function is a tedious process. 

When rigid structures appear in some linkages, a pattern can be found, and we can use this 

pattern to design a new graph grammar rule to capture these structures and exclude those valid 

linkages from the searching process. On the other hand, for the systematic enumeration of 

mechanisms, the structural characteristics of rigid structures are valuable to be sorted in order to 

ensure that future results do not suffer the same problems. When a rigid mechanism is found, it 

gives birth to a Taboo detection rule, which is automatically generated and check with subsequent 

mechanism graphs. 

The pattern we discover in this thesis is described as below: For any 1-DOF R-joint 

linkages that have more than 4 links, a rigid structure could exist and it could function as a coupler 

link in a 4-bar linkage that connects to the input and output link. An example of this is shown in 

Figure 9 before. Due to this pattern, a rule can be used to obtain the rigid structure by identifying 

and removing a 3-binary-link chain that is constructed by input, ground and output links from the 

linkage to obtain a rigid structure. The result for this method is promised based on Gruebler’s 

equation (1). For an N bar 1-DOF linkage with a rigid structure, when it contains a rigid structure 

that can match the description before, there must be additional structure to drive this rigid 

component and maintains the mobility back to 1-DOF. By introducing new variables to Gruebler’s 



 
 

 

                

           

 

                                                                                                 

 

                 

                    

                   

               

             

         

            

                    

                  

                 

      

 
Figure 23: A Remove_Three_Bar rule. 

 
Figure 24: Applying a Remove_Three_Bar rule to identify a rigid structure.Figure 25: A Remove_Three_Bar rule. 
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equation (1), the number of links and joints in the driver structure can be found and thus removed 

to find the rigid structure. The modified equation is as below: 

3(L-1-Lremove) – 2(J1-Jremove) = M (3) 

The new variables Lremove and Jremove are the numbers of the links and joints that can be removed. 

In order to reduce the DOF from 1 to 0, the combination of Lremove = 3 and Jremove =4 is chosen 

because it can reduce 1-DOF from the linkage. When Lremove = 3 and Jremove =4, the mobility in this 

equation is become M-1. A 3-binary-links chain with 4 joints is chosen to represent this 

combination. After removing this chain, the mobility of the remaining structure becomes 0 based 

on the equation (3), and a rigid structure is acquired. 

A rule names Remove_Three_Bar in Figure 10 is constructed by the component we 

selected. The LHS of this rule is a chain that has 3 nodes and 4 arcs, and the RHS is empty, which 

means by applying this rule, a chain structure with 3 links and 4 joints will be removed from the 

linkage, and a rigid structure with L-3 number of links can be discovered during L bar linkage 

Figure 10: A Remove_Three_Bar rule. 



 
 

 

                  

               

                 

      

              

             

                

                  

                 

                 

               

               

               

              

           

 

Figure 26: Applying a Remove_Three_Bar rule to identify a rigid structure. 

 
Figure 27: Two 4-bar P-joint linkage with different DOFs.Figure 28: Applying a Remove_Three_Bar rule to identify a rigid 
structure. 
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generation. An example in Figure 11 shows how this rule is applied to an 8-bar linkage to obtain 

the rigid structure. The 8-bar linkage is generated after applying Transformation rule as it was 

discussed before, and since it contains a three binary link chain. This chain is deleted and a truss 

structure with 5 links is obtained. 

The other method to prevent the newborn linkages having rigid structures is to conduct an 

examination by using the truss structures that have been discovered. The Remove_Three_Bar is 

only applicable to the 4-bar liked linkages to acquire the rigid structures. If a complex linkage 

contains a small rigid structure, like the 12-bar linkage with the 5-bar truss, this rule will not be 

capable to capture this truss structure due to this linkages does not act like a 4-bar linkage and 

there are not any 3 binary links chain within it. To solve this problem, the Taboo_Structure rules 

are used to recognize the smaller partial rigid structure in this linkage. For each of the 

Taboo_Structure rules, the LHS of it is set as the truss topology that was captured by 

Remove_Three_Bar before, and the RHS is blank since we only use the LHS to recognize rigid 

structure. Finally, all the Taboo_Structure rules are sorted inside a rule set called Taboo_Ruleset. 

Figure 11: Applying a Remove_Three_Bar rule to identify a rigid structure. 



 
 

 

                    

   

            

                

        

 

    

               

              

             

                

                

              

                  

                    

                 

                     

         

 

 
 

 
 

 

 

 

 

Figure 29: Two 4-bar P-joint linkage with different DOFs. 
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In this case, a taboo_ structure rule with a 5-bar true in the LHS can recognize the partial rigid part 

in the linkage. 

By using Remove_Three_Bar and Taboo_Structure these two kinds of rules, the problem 

of rigid sub-structure can be well avoided. When the search process goes further, more rigid trusses 

will be found and stored in the Taboo_Ruleset. 

3.2.4 P-Joint Substitution Rule 

Now the valid design space of R-joint topologies can be fully defined by the Generation, 

Transformation and Taboo detection rules that we discussed before. Since prismatic joints are also 

applied in real linkage design, introducing P-joints in mechanism topology synthesis can increase 

the diversity of the design space. The general approach to include P-joint linkage design into the 

search process is to apply a graph grammar rule to replace the revolute joint by prismatic joints, 

and a new topology with P-joint is created. However, the P-joint replacement process is not 

straightforward due to it could affect the rotatability of a link with R-joint on it. A prismatic joint 

is considered as a full joint, but its slot angle and the link for where it is placed to can affect the 

mobility and result in immovable link. For example, a four-bar linkage in Figure 12a that has 3 P-

joints. Because those 3 slot are parallel to each other, the link 2 and link 3 can move along the slot 

2 
1 

3 
Input 

(a) (b) 

1 

2 

3 

Figure 12: Two 4-bar P-joint linkage with different DOFs. 
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independently, and the mobility for this linkage is 2 instead of 1. In Figure 12b, these 3 P-joint 

now have the different slot angles, but the rotatability of link 1 about the revolute input joint is 

constrained by these P-joints in the linkage. Hence, we attempt to solve these problems and 

synthesize valid complex P-joint linkages. In this section, a P-joint substitution rule is used to 

recognize an arc that does not contain any joint type label and add the “p” label to this arc. After 

that, this arc is representing a P-joint in the linkage. This recognize-apply process is obvious, but 

in order to avoid the problems that were described before, some additional functions are required 

during the recognition-apply process. These additional functions are designed based on 3 

constraints, and these constraints can ensure the P-joint substitution rule be able to identify the 

appropriate locations and place the P-joints correctly. 

The first constraint is the slots of the sliding pair cannot be parallel. This problem was 

demonstrated by the example in Figure12a and it can be solved by assigning random angles to the 

P-joint slots. Because the topology cannot present the angle of a slot, this solution is applied to the 

models that are used for kinematic simulation. 

The second constraint is two binary links with only P-joints cannot be connected together. 

Take the example in Figure 12b, the binary links L2 and L3 both have two P-joints. This result in 

L2 and L3 are the only movable links in this linkage and input link is fixed. Therefore, when 

replacing P-joint to a R-joint arc, its neighbor nodes and arcs needed to be checked beforehand to 

avoid having the PPP chain. Figure13 shows two binary chains and each of them has 2 P-joints. 

Suppose the arc a0 is a potential location that a P-joint is going to be placed. Before that happen, 

an examination is needed to check if it is a valid location for this rule to apply. The nodes n0 and 

n1 are first noticed as 2-DOF nodes, which means they are representing binary links, and two P-



 
 

 

                     

    

               

                  

              

                 

                

                   

                  

                   

                     

               

 

 

 

 

           

Figure 32: Two situations that P-joint cannot be placed to the a0. 

 
Figure 33: Three loops in 8-bar topology contain the same arc a7.Figure 34: Two situations 
that P-joint cannot be placed to the a0. 28 

Figure 13: Two situations that P-joint cannot be placed to the a0. 

joints (a1 and a2) are detected. So placing P-joint at a0 will lead to a PPP chains and it is considered 

as a violation. 

The third constraint is the number of R-joints in each kinematical loop should not be less 

than 2 [11], so the rotation of links with R-joints could be preserved. A linkage topology can be 

seen as a combination of different kinematical loops. When placing a P-joint to a recognized R-

joint, all the loops that contain this same recognized joint in the linkage need to be examined. 

Starting from this R-joint, a best-first tree search method is used for searching the first loop that 

only contains 2 R-joints. If this loop is found, placing a P-joint to this R-joint will cause the linkage 

lack of rotation. For example, an 8-bar topology with 4 P-joint is shown in Figure14, and the arc 

a7 is a potential location for adding a P-joint. Three loops in this topology are sharing the arc a7 

and the loop C that already has two P-joints is found first. So arc a7 is not an option for placing P-

joint. Alternatively, if no loop is returned, the location is valid for adding P-joint. 
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Loop A Loop B Loop C 

Figure 14: Three loops in 8-bar topology contain the same arc a7. 



 
 

 

    

          

                 

                   

                  

                   

             

              

                    

                

                      

            
  

Figure 38: A tree of candidates is generated by applying different graph grammar rules. 

 
Figure 39: Two graphs that represent there linkages are isomorphism when the local labels are not considered.Figure 40: A tree of 
candidates is generated by applying different graph grammar rules. 
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4 Tree of Topologies 

Following the explanation of the Generation, Transformation, Detection and P-joint 

substitution rules, these rules can now be applied into the search process of R- and P-joint linkages. 

In this study, a search tree is used for exploring the design space of the topologies. The benefit of 

using a search tree is it directly relates to graph synthesis process. In the tree search process, each 

state of the tree can be presented by a graph. Once all of the graph grammar rules are designed, 

the new graphs will be generated as the next level in the tree. 

Figure 15 shows how the graph grammar rules operate in a search tree and discovering the 

design space. This tree starts with a graph A which is set as an initial host graph or a seed graph in 

the searching process.After the seed is placed, graph grammar rules start to recognize the locations 

that they can be applied to. In this case, rule 1 and 2 are capable to be applied to the seed graph 

Figure 15: A tree of candidates is generated by applying different graph 
grammar rules. 
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and the new candidates graph B and graph C are created, and they form the second level of the 

tree. For the next level, each of the graphs at level 2 will be seen as a new host graph, and the 

recognize-apply process repeats again. This tree searching process finishes when no rule is 

recognized. So for the graphs that at the bottom of this tree, there are no rules that can be applied 

to them and this tree stops growing, and the whole design space is discovered. 

Based on the expected result and the rules we built in this study, some invalid candidates 

need to be excluded from the tree searching process. In this study, the isomorphic topologies and 

topologies with rigid sub-structure are two types of unwanted results. Without removing these 

results, they will involve the search process and creating more undesired results. The isomorphism 

problem exists in the previous searching tree example. The two isomorphic candidates are 

represented by the some topology H, and they will be able to develop two identical sub-branches 

in the searching tree if more rules are applied to them. This problem should be avoided because 

generating isomorphic results is a redundant task, and it requires more time to finish the searching 

process. Consequently, only one of these topologies H should be kept in this tree. For the rigid 

sub-structure problem, the candidate D is also considered as a violation since it has a rigid structure 

within the topology. By setting this candidate as parent graph, the whole sub-branch that is 

generated by this candidate D contains all of the topologies that are with rigid structures. For this 

reason, the candidate D cannot be used for exploring and should be removed from the searching 

process once it is generated. To ensure each of the children in the tree is valid design, the problem 

of rigid structure and isomorphism need to be detected and solved. 

The rigid structure in a graph can be captured by applying Taboo detection rules, as was 

mentioned in section 3.23. All of the new rigid structures serve as new rules to prevent candidates 

having these same structures. For the isomorphism problem, graphs that are considered as 
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isomorphic will be removed by graph isomorphism check. The method of checking graph 

isomorphism will be discussed later. Since these two problems need to be resolved before storing 

the new candidate, addiction work is necessary during the synthesis process to ensure the validity 

of the new result. 

4.1 Graph Isomorphism Exclusion 

In this section, a methodology is established to examine graph isomorphism and avoid 

using the identical graph in further generation. When determining whether two graphs are 

isomorphic, we only focus on the connections between the nodes and arcs in the graphs. The local 

labels like “ground” and “input” in the nodes and arcs are not considered because they can be 

assigned after the topologies are designed. Figure 16 shows two linkage designs that isomorphic. 

Despite these two linkages have different numbers of ground joints and a different input links and 

they are regarded as two different mechanism designs, the graphs that represent the topology of 

these two structures are isomorphic. In this study, the isomorphic graphs are required to be detected 

and removed. Two procedures are constructed and be able to accomplished these requirements. 

The first step is to compare the basic information between two graphs. This information 

includes number of nodes and arcs, the sequence of the node degree and the sequence of the 

secondary node degree. The number of nodes and arcs indicates how many nodes and arcs this 

topology contains. For each nodes in the graph, the degree of it is the number of the arcs are 

connected to it. For instance in Figure 17, the degree of node n4 is 3 because there are three arcs 

a2, a3 and a6 attached to it. So the sequence of the node degree is obtained by sequencing all of 

the node degrees. Sequence of the secondary node degree is also needed because it can provide 

extra information for isomorphic check. For each of the nodes, this sequence is formed by 



 
 

 

                

                       

                 

            

               

           

              

                

                       

                 

            
     

Figure 41: Two graphs that represent there linkages are isomorphism when the local labels are not considered. 

 
Figure 42: A 6-bar topology with the graph information.Figure 43: Two graphs that represent there linkages are 
isomorphism when the local labels are not considered. 33 

Figure 16: Two graphs that represent the linkages are isomorphic when the 
local labels are not considered. 

indicating the degree of its neighbor nodes. In Figure17, the sequence of the secondary node degree 

for node n6 is [3, 2] because the degree of its neighbor node n4 is 3 and the degree of node n5 is 

2. All of these sequences will be sorted into a list and be compared to another graph during 

isomorphic examination. If two graphs have any different basic information, they are considered 

as two different graphs and can stay in the tree search process. By comparing this basic 

information, around 70 percent of the non-isomorphic graphs can be found. 

For the graphs that share the same basic information, they still cannot be considered as 

identical results. So the recognize function is used as the second step for isomorphism checks. In 

this step, one of the graphs is set as a host graph, and the other is set as the LHS of a graph grammar 

rule. By using the recognize function, the rule will try to map the host graph. If this mapping 



 
 

 

               

         

 

       

             

               

               

                

                 

              

   
 

 
   

 
 

     
      

 
      

  
  
  
  

   
   

 

         

 

Figure 44: A 6-bar topology with the graph information. 

 
Figure 45: The procedure of generating R-joint topology B or C from the parent topology A.Figure 46: A 6-bar 
topology with the graph information. 
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Number of Nodes
	
N=6
	

Number of Arcs
	
A=7
	

Sequence of Node degree
	
[3, 3, 2, 2, 2, 2]
	

Sequence of Secondary node degree
	
[3, 3]
	
[3, 3]
	
[3, 2]
	
[3, 2]
	

[2, 2, 2]
	
[2, 2, 2]
	

Figure 17: A 6-bar topology with the graph information. 

succeed, these two graphs are identical because they can match each other, else they are non-

isomorphic and will be sorted for further generation. 

4.2 Procedure of Synthesis and Examination 

The validity of a child graph is achieved by established the functions of isomorphism 

checking and taboo structure detection. Hence, a procedure of generating a child graph is required 

so these two functions can be executed during the process of generating children graphs. Figure 

18 shows the whole procedure of how a child candidate with R-joint is generated from a parent 

graph with these additional functions. All the candidates are sorted in a queue in this process. The 

queue sorting method follows the first in first out (FIFO) criterion. This sorting method references 



 
 

 

               

          

             

                    

                  

                  

       

               

                  

             
   

Figure 47: The procedure of generating R-joint topology B or C from the parent topology A. 

 
Figure 48: A tree of topologies that contains R- and P-joint linkages.Figure 49: The procedure of generating R-joint 
topology B or C from the parent topology A. 
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Figure 18: The procedure of generating R-joint topology B or C from the 
parent topology A. 

the Breadth-First Tree Search process. Since we only focus on generating a single candidate, this 

tree search process will be discussed in next section. 

At the beginning of the iteration, a candidate is dequeued from the candidates queue. 

Depend on which state of the tree this candidate is in, it can reference as a seed of the tree or a 

parent graph of a sub-branch. A Boolean statement is used in the initial step to check if the 

candidate A has the desired number of links, and it will decide which kind of graph grammar rules 

will be applied in the further step. 

If the number of links in candidate A is less than the desired number, Generation rules will 

be applied to this candidate to increase the link number and the new child B with more links and 
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joints will be created. After that, this child B needs to go through the isomorphic check and it will 

be sorted back into the candidates queue only if there no other isomorphism exist in there. 

Otherwise, if the candidate A has the desired number of links, the process will go to the 

other direction. In this direction, first, if this candidate A only has two ground joints, then no rules 

are applicable to it since the Transformation rule require at least 3 ground joints to be recognized. 

So the search process along this branch is finished, and it is considered to be at the bottom of the 

tree and no children graph can be generated from it. Else, the Transformation rule will relocate one 

of these ground joints to a link and create a temporary candidate graph C. Since this graph may 

contain rigid structure after the application of Transformation rule, it will be checked by Taboo 

detection rules to determine whether it contains any rigid structure. If a rigid structure is found, 

this candidate is confirmed as an invalid result, and the rigid structure within it may be sorted in 

the Taboo_ruleset if it is a new truss structure. After that, this iteration is finished. On the contrary, 

the isomorphism of this graph C is checked. Like the candidate B, it will be sorted if it is the unique 

candidate in the whole tree. 

The sorting section is after the isomorphism checking process, and any graph candidate 

that can enter this section is considered as a valid result. In this section, first, the valid candidates 

are enqueued to the candidate queue so it will be used as the parent graph in a new iteration. After 

that, the copy of it will be checked. If the number of links it has meets the design requirement, it 

will be sorted in the list called Desired_candidates, and the iteration restarts. 

The functions of taboo structure detection and isomorphism checking are integrated into 

the procedure of a single topologies generation. Due to this, the validity of each of the newborn 

child topologies is guaranteed. When there is no more rule that can be recognized, this procedure 
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stops and all R-joint topologies with the desired number of links are explored and sorted in the 

Desired_candidates. 

4.3 Selection of Tree Search Method 

With the procedure of examination and synthesis that were established above a tree search 

method now can be applied for fully exploring the valid design space of topologies. A suitable tree 

search method should be selected so it can explore the design space effectively. Because the design 

space needs to be fully discovered, some informed tree search methods like best-first tree search 

and A* tree search are not preferred because they only focus on finding a single optimal result in 

the tree. So in this section, the methods of breadth-first tree search (BFS), depth-first tree search 

(DFS) and random tree search are discussed. 

The main difference between BFS and DFS is the orders of how the candidates are 

generated. In BFS, the exploration within one level of the tree should be completed before new 

candidates can be generated from this level. It is accomplished by the sorting all the candidates in 

a queue. As it was mentioned before, the queue sorting follows the first-in-first-out (FIFO) 

criterion. At first, all of the parent graphs that are at the same level are sorted in the queue. After 

the first parent is dequeued, new children that are generated by applying the recognized grammar 

rules to this parent and they are stored at the end of the queue. Later, the second parent is dequeued 

and this process repeats. When the queue does not contain any parent candidate, it means all of the 

candidates at the parent level have been visited and used for generating new children candidates. 

The children level will be completed once all of the children candidates are generated. Meanwhile, 

the queue only contains these newborn candidates and they sever as the new parents to start another 

exploration at the next level. 
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In DFS, the exploration is along a branch of the tree. Different from BFS, the DFS uses a 

stack for sorting candidates and the criterion of it is last-in-first-out (LIFO). The candidate that is 

last pushed into the stack will be the first one out of it. So in DFS, first it sorts all of the candidates 

that were created by the seed. After that, the candidate on the top of the stack will be popped out 

and become a parent candidate immediately to synthesize the children candidate graphs for the 

next level. These graphs will be pushed into the stack and the whole process repeat. When there is 

no applicable rule for a candidate once it is out of the stack, it is considered to be at the bottom of 

the tree, and the search process along this branch is finished. So another candidate that from 

previous level is popped out from the stack is used for searching along the other branch. 

In random tree search, the searching process is randomly along a branch in the tree. Once 

a seed candidate is set in the tree, one of the invoked rules will be randomly selected and applied 

to it, and a new candidate is generated at the next level. Then a new random rule selection and 

application process happen again to this candidate. This process stops when it finds the desired 

candidate. Otherwise, it will continue until it reaches the bottom of the tree, and the whole process 

restarts from the initial seed state. 

When the design space of mechanism topologies needs to be entirely discovered, the BFS 

and DFS methods are first considered because the fully exploration of the design space by using 

random tree search is not promised. These two methods are compared by using them to explore 

the space of 8- and 10-bar R-joint linkages. The times for completing the 8-bar linkages search are 

about the same. But a difference appears during 10-bar linkage searching. It is shown that for 

synthesizing the same amount of results, BFS uses much shorter time than DFS. The duration for 

running BFS is 38 seconds and for DFS is about 4 minutes. As the topologies become more 

complicated, the duration of finishing a tree search will increase significantly. We speculate the 
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reason why BFS takes less time is because the isomorphism checking finishes faster during the 

search process. For isomorphism checking, all of the candidate topologies in the queue or stack 

need to be examined entirely. Due to the different sorting methods, isomorphic graphs in BFS may 

be discover earlier than which in DFS. For this reason, the BFS method is selected as it can 

generate the whole design space with less time, and it is more adapted to the rules we construct in 

this study. 

For random tree search, when the more candidates are found, the possibility of generating 

undiscovered candidate becomes smaller because the random generation could create isomorphic 

solutions repeatedly for every restart. Although the random tree search is not suitable for exploring 

the whole space, the time that it spends on finding a single desired candidate is very fast. For this 

reason, a design exploration tool is built based on the random tree search. This tool can create a 

mechanism topology that satisfies the required of number of links, P-joints and RP-joints. The 

detail of this generator will be discussed in the result section. 

4.4 Example of a Tree Topologies 

After selecting the BFS as the tree search method, the exploration of mechanism topologies 

can start. Within the tree, each of the candidates is generated by the graph grammar rules and no 

rigid structures and isomorphic graphs exist in this tree. When the exploration is finished, the 

arrangement of the desired mechanisms can be presented by a tree of topologies. In this section, 

the procedure of generating 4, 6 and 8-bar linkages with R- and P-joints is shown in Figure 19. 

Five rules are used for this tree search, which are Dyad, Triad, Double-Triad, Transformation and 

P-joint substitution rules. They are represented by R1 to 5 respectively in the tree of topologies. A 

pendulum with 2 links 1 R-joint and 0 P-joint (#L=2, #R=1, #P=0) is placed at the first level as a 
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seed of the tree because it is the most simple 1-DOF R-joint linkage. The seed is recognized by 

rules R1, R2, R3 and R5. After applying these rules to the seed, four children graphs are generated 

at the second level. These are the typical four-bar linkage (#L=4, #R=4, #P=0), a six-bar linkage 

(#L=6, #R=7, #P=0), an eight-bar linkage (#L=8, #R=10, #P=0) and a two-bar linkage with a 

single P-joint (#L=2, #R=0, #P=1), and the search process at second level is finished. A recognize 

and apply process repeats to generate new levels of candidates until no rules can be recognized, 

then the exploration stops and the tree will contain all the topologies. 

In each of the iterations, the isomorphic candidates or candidates that contains rigid 

structure will be discarded. If the discovered rigid structure is a new taboo structure without a rigid 

sub-structure, it will be sorted in the Taboo_ruleset. Hence, this breadth-first search is also able 

for exploring the rigid structure topology. Once the exploration is finished, the space of the rigid 

structures can be obtained. 

During the searching process, once a candidate contains a P-joint, only the P-joint 

substitution rules will be used for synthesis of its successors. The reason for this is it can reduce 

the searching space. In a fully discovered space, each of the R-joint linkages in the space can be 

used to generate P-joint linkages. If the additional generation and Transformation rules are applied 

to a P-joint linkage, there will be another isomorphic topology with same P-joint arcs exist in the 

tree. This results in spending more time to eliminate the redundant results. So the bottom of the 

tree contains results that have the maximum number of P-joints and no more P-joint can be added. 

Also, these results are originally generated from R-joints only linkage. Hence, when the tree search 

process stops, 4, 6 and 8-bar linkages with only R-joint or R- and P-joints can be obtained from 

the tree. 



 
 

 

 

 
 

 
 

 
 

 
 

 
 

 
  

 

Figure 50: A tree of topologies that contains R- and P-joint linkages. 

 
Figure 51: A deGeneration rule and its application of removing one binary link from an 8-bar linkage to create a 7-bar 2-DOF 
linkage.Figure 52: A tree of topologies that contains R- and P-joint linkages. 
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5 Exploration of Higher DOF R-joint Topologies 

By now, the valid design space of R-joint 1-DOF mechanism topologies are fully explored 

by using the graph grammar rules to produce a BFS tree search. The graphical representations for 

all of these results are obtained. With these results, a further exploration of higher DOF topologies 

could be easily achieved by degenerating 1-DOF topologies. This process is also accomplished by 

graph syntheses, and a new graph grammar rule is designed to obtain higher DOF close chain 

topologies. Since the multiple inputs linkage mechanisms are also used extensively in different 

applications, we also capture these mechanism topologies in this study. 

5.1 Degeneration Rule 

Since the mobility of a linkage can be changed by increasing or reducing the number of 

components, the approach of degenerating 1-DOF topologies is the similar to obtaining the rigid 

structure. Recall the modified Gruebler’s equation (3) in section 3.2.3. In order to increase 1-DOF, 

the combination of Lremove =1 and Jremove=2 is selected. This combination references a binary link 

with two revolute joints. The mobility of a linkage will increase by removing this component. 

Based on this, a graph grammar rule is designed to recognize the binary links and remove them 

from a topology, and a new topology with higher mobility is created. 

The design of the Degeneration rule and its application is shown in Figure 20. On the LHS 

of this rule, the node n2 represents a binary link that connects between two neighbor nodes n0 and 

n1. In order to prevent degenerating to an open chain topology, each of the node n0 and n1 is set 

to connect to 3 arcs individually, which means the link that is recognized by n0 or n1 at least 

contain more than 3 joints and it is not a binary link. The reason for this setup is if the binary link 

is originally connected to another binary link and be taken out, the binary that it disconnected from 



 
 

 

                   

                   

                   

                   

                   

          

 

   

               

                 

              

             
          

Figure 53: A deGeneration rule and its application of removing one binary link from an 8-bar linkage to create a 7-bar 2-DOF 
linkage. 
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Figure 20: A Degeneration rule and its application of removing one binary link 
from an 8-bar linkage to create a 7-bar 2-DOF linkage. 

will become a single pendulum in the topology, and an open chain is form. Also, the node n2 is 

set to 2 degrees strict matched, so it can only recognize the 2 degree nodes, which is referred as 

the binary links. An 8-bar linkage in Figure 20 is used to demonstrate how this rule is applied. In 

this example, a binary link n2 is connected to two ternary plates n0 and n1. The LHS of this rule 

recognizes of the location n0 to n6 respectively. After it is applied to this topology, the link n2 is 

removed and a 7 bar linkage with 2-DOF is created. 

5.2 Degeneration Process 

Unlike the method of exploring 1-DOF linkage, there is only one graph grammar rule is 

used for discovering the space of higher DOF linkages. So no tree search method is used to 

populate the results and no rigid structure problem needs to be considered since the degeneration 



 
 

 

                 

              

                

 

               

               

               

               

                

        

 

 

 

 

 

 

 

 

 

 

 

 

 

44 

process starts from the all of the existing valid 1-DOF topologies. This is the reason why we only 

focus on generating 1-DOF topologies first. Instead of make extra graph grammar rules to 

synthesize higher DOF linkages, they can be explored just by applying one rule to the obtained 

results. 

Since applying this degeneration rule to a topology can increase 1-DOF, so the space of 2-

DOF linkages can be created by applying this rule to all the 1-DOF topology. The isomorphism 

problem exists within these 2-DOF topologies. All of the newborn topologies are sorted into a list, 

and the redundant results are excluded. In the end, this list only contains valid 2-DOF topologies. 

Because this rule is universal to all of the topologies, so the higher DOF close chain topologies 

can be always obtained from the existing results. 
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6 Results 

This synthesis method was applied to search all 1-DOF linkages with different number of 

links and joint types, and the results are compared with other researchers. As is done in the related 

work, this topological comparison often focuses only on the graph connectivity and no distinction 

is made as to what link is ground and what joint is the prime mover. Therefore, in the grammar 

rules and tree search performed here, the local labels ground and input will be removed. It is 

important, however, to consider the effects of the ground when populating the space for defining 

distinct kinematic behaviors. For example, the engineers are is likely aware that six-bar revolute 

joint mechanisms come in five varieties if ground is considered (Watt I, Watt II, and Stephenson 

I to Stephenson III) but just two if ground is not (Watt and Stephenson). However, it is possible 

with the rules to create the expanded ground-sensitive configurations as well. Additionally, the 

rigid structure topologies that with 5, 7, 9 and 11 links are captured. All of these topologies are 

accessible, and it is the first time that the topologies of 11 bar trusses structure become available. 

The topologies with higher DOF can also be explored by degenerating the 1-DOF results. 

In the study, we are interested in the close chain topology designs, so a graph grammar rule is used 

to degenerate the results and avoid making open chain topologies. The number of topologies for 

each DOF matches other researches. However, the simulator we use in the study can only simulate 

1-DOF linkage. So we can only provide the graph representation of these multiple DOF topologies 

in this study. 

6.1 Mechanism with only Revolute Joints 

The results for 6, 8, 10 and 12-bar 1-DOF linkages are in Table 2. For 6, 8, and 10-bar linkages, 

the results match other authors’ findings [1] [2] [3], which are well established. For 12-bar linkage 
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synthesis, 6856 topologies are found, and the amount is the same as Tuttle’s [1] and Lee & 

Yoon’s[3] studies. Each of these 12-bar linkages does not contain any rigid structure due to the 

examination of rigid structure. In Sunkari and Schmidt’s study[4], they infer the reason for why 

Hwang and Hwang having larger results is because the degeneracy testing algorithm they use does 

not remove all the infeasible solutions. This proves that our synthesis method correctly spans the 

design space for mechanisms with only revolute joints. The results for 14-bar linkage is different 

from Tuttle’s [1] and Lee & Yoon’s[3] studies. Also, the validity of each result from their studies 

cannot be tested because that is no available access to those linkages. In this study, the total number 

of 14-bar linkages was not obtained due to a prohibitively long search process, but it appears to be 

creating valid 14-bar linkages individually. It is important to note that all of our results are 

explicitly captured in computer files. Related works only publish 248 topology graphs for 6- to 10-

bar and they are difficult to be accessible.  

This synthesis method is also able to create linkages like 16- or 18-bar mechanisms. Again 

larger rigid structures may exist, but our detection of rigid structures will ensure that only feasible 

solutions are presented. While the entire space of solutions may not be explicitly created (e.g. each 

saved to a computer file), any number of valid solutions can be created. 

Table 2: Results for 6, 8, 10- and 12-bar R-joints linkage compare with other authors’works. 

 Results Tuttle Lee & 
Yoon 

Hwang 
& 

Hwang 
6- bar 2 2 2 2 
8-bar 16 16 16 16 
10-bar 230 230 230 230 
12-bar 6856 6856 6856 6862 
14-bar  318123 275255  

 

Table 2: Results for 6, 8, 10- and 12-bar R-joints linkage compare with other authors’ works. 
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The result for higher DOF linkage is in Table 3. For this time, the results we generate match 

Hwang & Hwang’s study. Compared to Lee & Yoon and Tuttle study, our results are consistently 

higher. The topologies from these researchers are not available, so we cannot draw the conclusions 

on why these results are different. But we explicitly capture the total results of 2-DOF 7 bar linkage 

and 3-DOF 8-bar linkage with graph files. So Lee & Yoon and Tuttle are not correct because we 

obtained more topologies for these two results and they are shown in Table 4.  

 

Table 3: Comparison between the results of higher DOF topologies. 

Hwang Lee &  Results Tuttle & Yoon Hwang 
2-DOF 

7-bar 4 3 3 4 
9-bar 40 35 35 40 
11-bar 839 753 753 839 

3-DOF 
8-bar 7 5 5 7 
10-bar 98 74 74 98 

4-DOF 
9-bar 6 10 10 6 

 

 

Table 3: Comparison between the results of higher DOF topologies. 

 

 

 

 

 

 



 
 

 

 

            

Table 4: Results of 2-DOF 7 bar topologies and 3-DOF 8 bar topologies 
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Table 4: Results of 2-DOF 7 bar topologies and 3-DOF 8 bar topologies 



 
 

 

   

               

                

                  

               

               

               

                

                 

                  

               

               

               

                 

                  

                    

     

 

 

          

        

        
 

Table 5: Amounts of 3,5,7,9 and 11 links rigid structure topologies. 
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6.2 Rigid Structures 

All of the rigid structures with 5, 7 and 9 links are obtained during R-joint linkages 

synthesis. This process is accomplished by the Taboo detection rules and the truss result are depend 

on the complete exploration of the design space of the 8- to 12-bars topologies. For 11 bar rigid 

structures, they can be gained through degenerating all of the 12-bar R-joint topologies. In this 

degeneration process, one of the binary links with 2 R-joints is taken out from the linkage. Based 

on the Gruebler’s equation (3), this will reduce 1-DOF for the linkage, and the rigid structure 

topology with 11 links is formed. Table 5 shows the total number of each kind of rigid topologies 

and the graph representations of rigid structures with 5, 7 and 9 links are in Table 6. 

The amount of the 5 to 9-link rigid structures matches Rojas’s study [19]. For the 11 links 

results, we obtain more new truss structures than which have been published. In Yang and Yao’s 

study[20], they state the total amount of 11-link topologies is 239. By using degenerating method, 

we create 562 11-link rigid structures. Each of these new results is checked by Taboo detection 

rules to ensure they do not contain any rigid sub-structures. We also provide the topology for each 

of these results. Before here, Rojas states that the truss structures are only available up to 9 links 

[19], but with this study, now each of the 11 links truss topologies is accessible as a graph that can 

be recognized by computer. 

Table 5: Amounts of 3,5,7,9 and 11 links rigid structure topologies. 

Number of links 3 5 7 9 11 

Number of Topologies 1 1 3 28 562 



 
 

 

 

 

 

 

 

            
 

Table 6: Topologies of 3, 5, 7 and 9 links rigid structure topologies 
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Table 6: Topologies of 3, 5, 7 and 9 links rigid structures 



with P-joints. 
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6.3 Mechanisms with Revolute and Prismatic Joints 

When replacing R-joints with P-joints in a linkage, the grammar rule is based on the last 

two constraints mentioned in section 3.2.4. The results for enumerating the size of the space are 

shown in Table 7. All of the 50 6-bar topologies involving combinations of R- and P-joints have 

been simulated in order to prove their 1-DOF validity. Furthermore, none of them has link that 

move independently of the prime mover. This result is different than Sardain’s study [10]. The 

reason for that is because the P-joint substitution rule can be applied to the linkage that primary 

components and secondary components cannot be clearly defined. For example, the kinematic 

property of each link in a Stevenson-II 6-bar 4 P-joints linkage in Figure 21 depends on others. So 

Sardain’s method is not suitable in this situation. 

Beyond the 6-bar linkages, values are shown for 8, 10, and 12-bar R and P mechanisms. 

Unfortunately, at the time of writing, it was realized that errors occur in some of these generated 

mechanisms. Therefore, the reported numbers that are followed by an asterix (*) are upper-bounds 

instead of actual values. This is a result of a higher-order constraint that was not captured by the 

rule and has not been explicitly defined in the literature. This is illustrated by the topology in Figure 

21(a), which is an 8-bar linkage with three consecutive P-joints. The positions of these 3 P-joints 

Table 7: Results for 6, 8, and 10-bar linkages 

  2bars 4bars 6bars 8bars 10bars 
1 1 1 6 84 2307 

Number 
of  

P-joints 

2 
3 
4 
5 

 
 
 
 

2 
 
 
 

16 
19 
9 

 

345 
780* 
1083* 
682* 

12925 
43883* 
97138* 

 
6    140*  

 

Table 7: Results for 6, 8, and 10-bar linkages 
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Figure 56: A Stevenson-II linkage with 4 P-joints 

 
Figure 57: A dyad component attached to a PPP chain and this result is invalid Figure 58: A Stevenson-II linkage with 4 P-joints

Figure 59: A dyad component attached to a PPP chain and this result is invalid. 

 
Figure 60: A Replace_RP_Joint rule with its application.Figure 61: A dyad component attached to a PPP chain and this result is 
invalid. 
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L1 L2 
L2 L1 

Figure 21: A Stevenson-II linkage with 4 P-joints [21]. 

do not violate the previous rules, but still the linkage has 2-DOF. The dyad (L1 and L2) in the 

linkage does not affect the movement of this linkage. After removing this dyad, a new 6-bar linkage 

is created, and a PPP dyad exists in this linkage which is considered as a violation in Figure 22b. 

The new challenge arises to include this as a constraint in the P-joint substitution rule to reduce 

these numbers to the actual set of feasible R and P mechanisms. Part of the difficulty is allowing 

valid PPP chains such as shown in Figure 22. 

A PPP chain 

(a) (b)
	

Figure 22: A dyad component attached to a PPP chain and this result is invalid.
	



 
 

 

       

              

               

                  

                 

               

                 

                  

                 

                  

                  

                  

     

        

 
Figure 62: A Replace_RP_Joint rule with its application. 

 
Figure 63: The Graphical User Interface (GUI) of the design exploration tool.Figure 64: A Replace_RP_Joint rule with its 
application. 
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6.4 Mechanism with Revolute and Pin-in-Slot Joints 

After having the results with P-joints, we can introduce RP-joints to better represent real 

mechanisms. This is opposed to Tsai’s approach where the RP-joint is a special case of collocating 

an R-joint at the same coordinates as a P-joint. However, this neglects the fact that the number of 

nodes will no longer correspond to the number of rigid links. Our goal is to include mechanisms 

like the scotch-yoke (with L = 3) and various other complex linkage with RP-joint designs. 

The approach to generate an RP-joint in the graph is to search for binary links with one R-

joint and one P-joint. The application of the rule deletes the binary link and replaces the joints with 

a single RP-joint. The rule is illustrated in Figure 23. Since we have some violations in P-joints 

results, we only show results for linkages with R and RP joints and the results we have are still 

valid. The reason for that is when generating certain number of RP joint, we need the select the 

linkage that has the same number of binary that contains R and P joints. So this can avoid selecting 

a linkage that contains PPP chain. 

Figure 23: A Replace_RP_Joint rule with its application. 
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During isomorphism comparison, the direction of the arc representing an RP-joint is 

excluded since we are only concerned with the location of the RP-joint in the topology. The 

number of topologies for 3- to 7-bar linkage comprised R- and RP-joints is in Table 8. Since we 

use a one-way direction to present the order of the slot and pin design, the total number of R- and 

RP-joint topology designs could be calculated, which is the number of results we obtain multiplied 

by 2n. The n is the number of RP-joints at the corresponded level. For example, we obtain 3 5-bar 

1 RP-joint topologies without considering the direction of the RP-joint arc in this study. The total 

number of this topology designs can be calculated as 3*21, which is equal to 6. This is because the 

RP-joint in each of these 3 topologies can be represented twice by using two different directional 

arrows separately. 

The design space of the RP-joint topologies is first obtained in this study. With the 

representation of RP-joint, the real linkage design with pin-in-slot joint could be represented better. 

Also, the RP-joint topologies may provide alternative solutions in the linkage design since we are 

able to introduce RP-joint to the complex linkage syntheses. 



 

Table 8: Results for 6, 8, and 10-bar linkages 

 

  

3bar-
1 RP 

 
5bar-
1 RP 

 
4bar-
2 RP 

 
3bar-
3 RP 

7bar-
1 RP 

6bar-
2 RP 

5bar-
3 RP 

 

 

4bar-
4 RP 

 

55 

Table 8: Results for RP-joints linkages 

Total 
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Examples 
Generated from 4-bar linkage 

 

 
Generated from 6 bar linkages 
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Generated from 8 bar linkages 

 

 

32 

 
  

 

   

41 

  
 
 

    

20 

  
 
 

   

5 

  
 

   



 
 

 

    

             

               

              

             

               

                

      

           

                

             

                

                  

                

            

Figure 65: The Graphical User Interface (GUI) of the design exploration tool. 
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6.5 Design Exploration Tool 

With all the graph grammar rules and rigid structures we constructed, a design exploration 

tool is created to generate user specified linkage. Because the process of design and building the 

model of complex linkages is tedious, this tool provides a convenient way to generate the 1-DOF 

linkages with user’s requirement. The Graphical User Interface (GUI) of this tool is shown in 

Figure 24. Based on the desired number of each component, this tool will synthesize a topology 

mechanism that can satisfy the requirement and put it into the kinematic simulator to simulate the 

movement of this topology. 

The process of generating desired topology is accomplished by modified random tree 

search method. In this tree search, the graph grammar rules are applied in sequence base on their 

functions. First in this search, the generation and Transformation rules are randomly selected and 

applied to create the R-joint topology that has the desired number of links. This topology is 

checked by the Taboo detection rules to ensure its validity. After that, if a P-joint design is required, 

the P-joint substitution rule will randomly apply to the different locations of the topology until it 

Figure 24: The Graphical User Interface (GUI) of the design exploration tool. 



 
 

 

                

               

                

                 

                 

                   

             

          

                

               

                 

             

               

        

           

     
 

 
 

     

 

 

   
 

 
 

57 

Figure 25: Three mechanisms are created by the design exploration tool . 

8bar, 2 P-joints, 2 RP-joints 

(a) 

10bar, 4 P-joints, 4 RP-joints 

(b) 

meets the requirement. If RP-joint is involved, we need to make some changes on the user input 

to ensure the result that it returns can meet the user’s specification. Because this RP-joint 

substitution rule is to combine an R-joint and a P-joint together to create a Pin-in-Slot joint, 

meanwhile a binary link between these two joint is taken out. So the first step is to randomly 

generate a linkage with P-joints, and the number of P-joints should be the same to the desired 

number of RP-joint. In the same time, the link number of it should be equal to the user design 

number plus the number of PR-joint. So this change can provide enough recognizable locations 

for the RP-joint rule. And the result can be generated. 

By using this design exploration tool, a random topology with desired number of link and 

joint types can be created quickly. This topology can be converted to a real design linkage and 

simulated in PMKS. Some of the results that are generated by this tool are shown in Figure 25. 

Usually, designing and modeling the linkage with this complexity is a time-consuming process. 

But the design exploration tool now can provide a simple way to achieve generating complex 

linkage mechanism that can satisfy the user requirement. 

14bar, 5 P-joints 

(c) 
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7 Conclusions 

This study establishes a new graph representation for linkages. The addition of RP-joints 

is introduced to the graph to represent a linkage that has pin-in-slot joint. So any planar mechanism 

linkage with R-, P- and RP-joints can be represented correctly by using this graph representation. 

This representation is easy to understand and it can capture the most of the information about the 

linkage. Such as the combination of the links and joints, the joint type of each of the joint and 

prime mover of the linkage. 

With the graph representation, a valid design space for linkages comprised with R-, P- and 

RP-joints can be explored by graph synthesis. This synthesis process is accomplished by the graph 

grammar rules. These rules can provide a design language so each of the new designs can be 

generated by following these criteria. The function of a graph grammar rule is to modify a host 

graph to create a new topology. In this study, the Generation, Transformation and Detection 

grammar rules are constructed and are used to generate R-joints links. Generation rules can add 

components to a linkage without changing its mobility. When a linkage contains multiple ground 

joints, the Transformation rule can detach one of the ground joints and relocate it to another link. 

After that, rigid structures are be detected within the linkage by Detection rules. These rules are 

carefully constructed to make sure the results can meet the design requirement. A Breadth-First 

tree search method is used to explore the 1-DOF results by applying these grammar rules to 

synthesize new candidates in the tree. The correctness of this method is proven by having the same 

number of unique solutions to the results of other author’s works. We also explore the topologies 

with higher DOF. By verifying the topology graphs, it shows the graph synthesis approach can 

cover more valid designs than other studies. 
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After R-joint linkages are constructed, P-joints can be added to the linkage by replacing R-

joints. Because the P-joint can affect the rotatability of the linkage, this P-joint substitution rule is 

designed based on the 3 constraints to avoid rotatability being affected after introducing P-joint to 

the linkage. By this approach, we successfully obtain the valid design space of the 4 and 6-bar 

topology design with multiple P-joints. However, we found out these 3 constraints are not enough 

to avoid this problem after synthesizing the 8-bar results, and this problem is harder than expected. 

Although violations exist starting at 8-bars level, we define the upper bound of the P-joint topology 

design and the valid result is included. For the RP-joint generation, a binary link with R- and P-

joint is replaced by a RP-joint. Since violation happens by applying P-joint, we only search for 

linkages that only have R- and RP-joint and it can prevent using violated P-joint results. The results 

for the enumerations of the space of RP-joints topology have been fully examined and it is an 

innovation presented in this paper. 

In this study, a design exploration tool provides a convenient way to simplify the process 

of designing complex mechanism topologies with different types of joints. This tool is designed 

based on the modified random tree search method and the routine of graph synthesis process. The 

user only needs to specify the number of link and type of joints, and the random tree search process 

can return the desired topology, and its kinematic movement is simulated by the PMKS. 

Theoretically, this design tool can provide a 1-DOF topology with unlimited number of links. So 

it could reduce the time on designing complex mechanism and verify its validity. 
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